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A Method to Calculate Uncertainty of Empirical Compressor 

Maps with the Consideration of Extrapolation Effect and 

Choice of Training Data 

 
Although compressor maps are powerful tools to  estimate compressor power consumption quickly, their 

ability to extrapolate outside their training data range is always questioned. In order to quantify the effect 

of extrapolation, a method to calculate the uncertainty of compressor map outputs is develo ped in this 

paper. The method considers 4 major components of uncertainties due to various sources such as 

measurement uncertainties of training data and equation of state. The change of the predicted map 

uncertainty with the degree of extrapolation and the map accuracy are shown for 8 different compressor 

maps. The results indicate that the uncertainty from model random error increases significantly as the 

maps extrapolate though extrapolation does not necessarily imply inaccurate compressor map outputs. The 

results also show that the uncertainty due to training data is the most significant component of 

uncertainties when the maps are not extrapolated. 

Introduction and Literature Review 

Compressor models are widely used in specifying the performance of compressors by manufacturers 

for design purposes of compressors as well as for vapor compression system simulation. When models are 

built for compressor designs, deterministic models such as e.g. Wang et al. (2008), Bell et al. (2012), Gall 

et al. (2015) and Ibsaine et al. (2016) are used because the models give them flexibility to optimize a 

compressor design by tuning the geometry of the compressors and compressor valves and allows the 

investigators to study the compressor dynamics in details. However, modelers of thermal systems using 

compressors do not need the flexibility because changes of compressor geometry are usually not concerns 

of the system modelers (Ding 2007), nor do they need the study of the compressor dynamics because heat 

exchanger dynamics are usually more important in their applications (Rasmussen 2012). While models of 

some types of compressors can be simplified for their uses as subsystem models (Wang et al. 2000), others 

who cannot simplify the deterministic models such as ones of scroll compressors prefer to use simplified 

compressor models trained by experimental data. This speeds up their models which require multiple runs 
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of the compressor model for one run of their system models (Park et al. 2001; Zakula et al. 2011; Cheung 

and Braun 2013; Heo et al. 2013). The simplest compressor map has standard forms (e.g. AHRI Standard 

540 (AHRI 2004), EN Standard 12900 (CEN 2013)) that can be constructed easily by linear regression with 

measurements of compressor suction and discharge pressure in calorimeter tests and are commonly used by 

compressor manufacturers to describe their compressor performance in specifications and reports (AHRI, 

2016). 

The performance of mappings is commonly expressed in terms of the accuracy of the maps at training 

data points. This can be easily done and therefore used widely for conventional compressors (e.g. Jähnig et 

al. 2000; Winandy et al. 2002), variable speed compressors (e.g. Shao et al. 2004), as well as for 

compressors with injection (e.g. Navarro et al. 2013; Bach et al. 2015; Dardenne et al. 2015).  

Although the performance accessed by prediction accuracy at training data points is easy for readers to 

understand, they do not account for the effect of the measurement uncertainty of the training data. They 

also do not specify the effect of the choice of training data to the accuracy of the maps  (e.g. the change of 

map accuracy due to the change of the training data set). It is typically unclear if the maps are accurate 

outside their training data range before any experimental validation, and this lack of knowledge may cost 

opportunities in compressor model development such as the possibility to reduce the number of calorimeter 

tests with correct choices of calorimeter test conditions and the option of validation o f compressor map 

outputs for out-of-range operation without extra testing. This also hinders the research development using 

compressor maps such as cold climate heat pump (Caskey et al. 2012) and faulted vapor compression 

systems (Shen et al. 2009) which involves the use of compressor maps at out-of-range operation. 

Few research papers investigate the issue of map performance outside the range of training data. Jähnig 

et al (2000) conducted a rigorous study in which they showed that map performance outside of the training 

data range can drastically differ from the performance within the training data range. The authors did extra 

tests to define the extrapolation accuracy of the map to be within 10% of the measurement when the 

evaporating and condensing temperature lied within 10 K (18°R) from the extremes in the training data, but 

it is unknown how the magnitude of the temperature difference 10 K (18°R) is coupled with the range of 

the saturation temperature in the training data. Li (2012) did a similar study  for its scroll and reciprocating 

compressor model. Aute et al. (2015) compared various compressor modeling methods and used Monte 
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Carlo method to calculate the uncertainty of 10-coefficient compressor maps, but its method from Coleman 

and Steele (2009) does not involve the difference between model training data and model inputs and cannot 

account for the effect of extrapolation to model uncertainties well. Their method also requires more than 

1,000 runs of the map and its training process to calculate the uncertainty per data point is not very feasible 

for most applications. 

It is usually believed that extrapolation error might be reduced by using deterministic models, such as 

ones in Wang et al. (2008), Bell et al. (2012), and Molinaroli et al. (2017), which are tuned or scaled 

towards the experimental data. However, these deterministic models are often not used in developments 

that require quantification of extrapolation errors because of the aforementioned reasons, and another 

approach is needed to quantify the potential extrapolation error. 

To simplify the quantification of extrapolation error for empirical compressor maps, Cheung and Bach 

(2015) proposed a method to break up overall compressor power consumption uncertainty into four 

contribution components.  The authors compared the actual accuracy of the map to the sum of the 

uncertainty contribution components  and found that both increase if the number of training data points is 

decreased. Uncertainty was found to increase with increasing distance from the nearest training data point. 

Bach and Cheung (2015) extended the method in Cheung and Bach (2015) towards data from a vapor 

injected compressor. However, both papers were developed on either simulation results only or the 

performance of specialized models. A more rigorous method that is validated by experimental results and a 

more general method of compressor map uncertainty prediction is therefore needed. 

This paper focuses on the development and application of a rigorous approach taking into account a ll 

major aspects and sources of the uncertainties involved in 10-coefficient compressor map in AHRI 

Standard 540 (AHRI 2010) that predicts compressor power consumption. The map is widely used in the 

community for various applications (e.g. use of the compressor maps in reports to compare performance of 

compressors using various refrigerants from different manufacturers in AHRI 2016; use of the compressor 

map in cold climate heat pump studies in Caskey et al. 2012; use of the compressor map for vapor 

compression system design in Rice and Jackson 2005; use of the compressor map for faulted vapor 

compression systems in Shen et al. 2009; study of the uncertainty of the compressor map with a numerical 

approach in Aute et al. 2015) and are useful to illustrate the quantification of extrapolation effect by 
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uncertainty calculation. In particular, it breaks out the effect of different uncertainty components, including 

pressure measurement, equation of state, model random error, training data, and outputs. This breakdo wn 

allows to specify the major sources of uncertainty and their effects due to changes in the training data, 

which can be used to simplify the calculation of these components further in future works. 

Linear Regression for 10-Coefficient Compressor Maps 

To understand how uncertainty of compressor map can be affected by its training data, it is necessary 

to understand the training of the coefficients in 10-coefficient compressor maps by linear regression. Linear 

regression estimates parameters in a linear model of a system with some nonlinear behavior, and its true 

model can be mathematically written as Eq. (1) (Montgomery 2005). 

𝑦𝑡𝑟𝑢𝑒 = 𝑥𝑇 �⃑�𝑡𝑟𝑢𝑒 + 𝜀 (1) 

Eq. (1) shows a linear model which the true value of a dependent variable 𝑦 equals to the dot product 

of an independent variable vector 𝑥  and a vector of true coefficients 𝛽𝑡𝑟𝑢𝑒 with an error 𝜀 between the 

model and the system. However, it is impossible to obtain the true values of the parameter vector because it 

is impossible to obtain every possible pairs of dependent variables and independent variable vectors in the 

system. Each pair of dependent variable and independent variable vector is a data point, and the model 

coefficients can only be estimated from a finite set of observations of data points from the system. The 

resultant model only contains estimates of the coefficients and can only  give estimates of the dependent 

variable rather than its true values as shown in Eq. (2). 

𝑦 = 𝑥 𝑇 �⃑�
̂
 (2) 

The estimated coefficients in Eq. (2) can be calculated from measurement of independent and 

dependent variables in a system as shown in Eq. (3). 

𝛽
̂
= (𝑿𝑡𝑟𝑎𝑖𝑛

𝑇 𝑿𝑡𝑟𝑎𝑖𝑛)
−1𝑿𝑡𝑟𝑎𝑖𝑛

𝑇 𝑦𝑡𝑟𝑎𝑖𝑛  (3) 

Variables with the subscript train in Eq. (3) represent training data of the model. The matrix 𝑿𝑡𝑟𝑎𝑖𝑛  in 

Eq. (3) is formed by the independent variable vectors in all data points inside the training data as shown in 

Eq. (4). 

𝑿𝑡𝑟𝑎𝑖𝑛 = [𝑥𝑡𝑟𝑎𝑖𝑛,1 ⋯ 𝑥𝑡𝑟𝑎𝑖𝑛,𝑖 ⋯ 𝑥𝑡𝑟𝑎𝑖𝑛,𝑛]
𝑇 (4) 
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The vector of dependent variables of training data in Eq. (3) is also defined in a similar manner as Eq. 

(5) . 

𝑦𝑡𝑟𝑎𝑖𝑛 = [𝑦𝑡𝑟𝑎𝑖𝑛 ,1 ⋯ 𝑦𝑡𝑟𝑎𝑖𝑛 ,𝑖 ⋯ 𝑦𝑡𝑟𝑎𝑖𝑛 ,𝑛]𝑇 (5) 

A 10-coefficient compressor map that estimates compressor power consumption is a cubic polynomial 

that depends on dew point temperature values at compressor suction and discharge as shown in Eq. (6).  

�̂̇�𝑐𝑜𝑚𝑝 = �̂�0 + �̂�1𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 + �̂�2𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 + �̂�3𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2 + �̂�4𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠

+ �̂�5𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
2 + �̂�6𝑇𝑑𝑒𝑤,𝑠𝑢𝑐

3 + �̂�7𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2 𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

+ �̂�8𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠
2 + �̂�9𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

3  

(6) 

Although the polynomial is not a simple linear equation, its empirical coefficients can still be estimated 

by linear regression. To estimate the parameters in the 10-coefficient compressor map by linear regression, 

the map is converted to the equation form Eq. (2) by using the independent variable vector in Eq. (7) and 

the power consumption as the dependent variable.  

𝑥

= [1 𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐
2 𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠

2 𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐
3 𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐

2 𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠
2 𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠

3 ]𝑇 

(7) 

The coefficients in Eq. (6) can then be calculated by Eq. (3). Occasionally the inversion of matrices in 

Eq. (3) may yield incorrect answers in computers due to numerical round-off errors, and normalization of 

Eq. (7) may be needed to calculate the correct parameters. In this case, the normalized vector 𝑥  should be 

used in all uncertainty calculation methods in this paper in order to calculate the correct uncertainties and 

estimation. 

Although the map uses dew point temperature at compressor suction and discharge, they are not 

measured directly from the compressor. In reality, only refrigerant pressure values at compressor suction 

and discharge are measured, and then converted to compressor suction and discharge dew point 

temperature before being used by the maps to calculate compressor power consumption. 

Method to Calculate Uncertainty of Compressor Map Output 

Uncertainty of the compressor map output quantifies the potential difference between the true values of 

the output to the map outputs. The sources of uncertainty propagated to the map output are illustrated in 

Figure 1.  
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Figure 1: Flowchart of uncertainty propagation to the compressor map output 

Although most people only consider the propagation of uncertainty of measurement at map inputs as 

the uncertainty of the map output, the propagation of uncertainty starts with measurement values in both the 

map inputs and the training data. The power and pressure values in the map inputs and the training data 

carry measurement uncertainties and propagate to the map outputs as they are us ed in the estimation and 

the training process. Because the pressure values are converted to dew point temperature before use and the 

dew point temperatures are calculated from pressure measurements by the equation of state of the 

refrigerant, the uncertainty of the equation of state propagates to the map output through the estimation and 

the training process. The propagation of uncertainties from the input variables when a user uses the map is 

the uncertainty due to inputs, and the propagation of uncertaint ies from training data during the map 

training process forms the uncertainty due to training data. During the creation of the map, it is impossible 

for a user to confirm if a map is identical to the corresponding true mathematical relationship and to use a ll 

possible data points within the applicable range of the map. There are always some uncertainties in the 

mathematical structure of the map and its estimated coefficients even if there are no uncertainties in the 
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measurement and equation of state, and it is proposed to account for this type of uncertainty by calculating 

the uncertainty due to model random error. Since the map is trained by measured values of the variables, 

the uncertainty components only account for the uncertainty between the map estimation and the 

corresponding measurement. However, the uncertainty of a sensor is the uncertainty between the 

measurement and the corresponding true value, and hence the uncertainty of a map output should be 

defined similarly as the uncertainty between the estimation and the corresponding true value, and an 

uncertainty component called the uncertainty due to outputs is introduced to satisfy this definition. . These 

uncertainties together form the uncertainty due to inputs, the uncertainty due to training data, the 

uncertainty due to model random error, and the uncertainty due to outputs. The imperfection of the cubic 

compressor map and the training data to represent the compressor power in the entire operating range of the 

compressor forms the uncertainty from model random error.  

There are other sources of uncertainties that are neglected in this study. For example, although the 

uncertainty due to numerical approximation exists because of the numerical procedure used in the 

calculation of the compressor map, they are assumed to be negligible because the solution of the 

polynomial is explicit and is not complex. Uncertainties due to manufacturing tolerances, aging, and wear 

are also neglected in the current work because data on these issues in public literature is limited. 

The combination of the four remaining major uncertainty components - uncertainty due to inputs, 

uncertainty due to training data, uncertainty due to outputs, and uncertainty due to model random error  - 

creates the overall standard uncertainty of the compressor map output, which can be expanded to the 

overall expanded uncertainty by defining a confidence level as suggested in ASME Performance Test 

Codes (PTC) 19.1-2013 (ASME 2013). 

Uncertainty of pressure measurement 

Uncertainty of pressure measurement ∆𝑃𝑚𝑒𝑎  is usually described as a percentage 𝑟𝑝  of full scale 

measurement 𝑃𝑓𝑢𝑙𝑙  in the specification of a pressure transducer. It can be calculated by Eq. (8). 

∆𝑃𝑚𝑒𝑎 = 𝑟𝑃𝑃𝑓𝑢𝑙𝑙  (8)  

 

For uncertainties that are decscribed as the percentage of measured pressure rmea, Eq. (9) can be used

 . 
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∆𝑃𝑚𝑒𝑎 = 𝑟𝑚𝑒𝑎𝑃𝑚𝑒𝑎  (9)  

 

Uncertainty due to equation of state 

Uncertainty of equation of states is the uncertainty of the estimation equation of dew point temperature 

from pressure, and it differs between equations of states. Its values for different refrigerants are tabulated in 

Table 1. 

Table 1: Uncertainty of equations of states of different 

refrigerant 

Refrigerant Uncertainty Literature 

R22 0.2% of the dew point pressure Kamei et al. (1995) 

R404A 0.5% of the dew point pressure Lemmon (2003) 

R410A 0.5% of the dew point pressure Lemmon (2003) 

The uncertainty of dew point pressure due to the equation of states can be expressed by Eq. (10). 

∆𝑃𝐸𝑂𝑆 = 𝑟𝐸𝑂𝑆𝑃𝑚𝑒𝑎  (10) 

Uncertainty of dew point temperature 

The uncertainty of dew point temperature is formed by combining the uncertainty of pressure 

measurement and uncertainty due to equation of state. Assuming that the two uncertainties are not 

correlated, the low-order uncertainty of dew point temperature can be computed by Eq. (11) according to 

Joint Committee for Guides in Metrology  (JCGM) Guide to the Expression of Uncertainty Measurement 

(GUM) 100-2008 (JCGM 2008). 

∆𝑇𝑑𝑒𝑤 ,𝑙𝑜𝑤 = √(
𝜕𝑇𝑑𝑒𝑤 (𝑃𝑚𝑒𝑎 )

𝜕𝑃
)
2

⋅ (∆𝑃𝑚𝑒𝑎
2 + ∆𝑃𝐸𝑂𝑆

2 ) 

(11) 

The high-order uncertainty can be calculated by Eq. (12) following the same standard. 

∆𝑇𝑑𝑒𝑤 ,ℎ𝑖𝑔ℎ = √
1

2
(
𝜕2𝑇𝑑𝑒𝑤 (𝑃𝑚𝑒𝑎 )

𝜕𝑃2
)

2

⋅ (∆𝑃𝑚𝑒𝑎
4 + ∆𝑃𝐸𝑂𝑆

4 ) 

(12) 

Although JCGM GUM 100-2008 recommends the use of third-order partial derivatives to calculate the 

high-order uncertainty, they are difficult to be calculated for equation of states and are assumed to be 

negligible in this paper.  
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The partial derivatives in Eq. (11) and (12) are calculated by the method in Thorade and Saadat (2013), 

and the calculation is implemented by the software CoolProp (Bell et al. 2014). The overall standard 

uncertainty of the dew point temperature is the sum of squares of the uncertainty component in Eq. (11) and 

(12) as shown in Eq. (13). 

∆𝑇𝑑𝑒𝑤 = √Δ𝑇𝑑𝑒𝑤 ,𝑙𝑜𝑤
2 +Δ𝑇𝑑𝑒𝑤 ,ℎ𝑖𝑔ℎ

2  
(13) 

Uncertainty due to inputs 

Uncertainties of inputs to the compressor map - compressor suction and discharge dew point 

temperature - propagate to the map output and form the uncertainty due to inputs. According to the Joint 

Committee for Guides in Metrology (JCGM) Guide to the Expression of Uncertainty Measurement (GUM) 

100-2008 (JCGM 2008), the low-order uncertainty due to inputs can be calculated by Eq. (14). 

∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑖𝑛𝑝𝑢𝑡,𝑙𝑜𝑤 = √(
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
)

2

∆𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2 + (

𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
)

2

∆𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
2  

(14) 

The low-order uncertainty in Eq. (14) calculates the uncertainty due to inputs accurately if the map is 

linear and hence a first-order polynomial. However, compressor map is a cubic and a high -order 

polynomial. According to the JCGM GUM 100-2008, there may be a significant uncertainty component as 

a result of the high-order terms. The component is labeled as high-order uncertainty due to inputs and is 

calculated by Eq. (15). 

∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑖𝑛𝑝𝑢𝑡 ,ℎ𝑖𝑔ℎ =

√
 
  
  
  
  
 
  
  
  
  
  
 
  
  
  
  

((
𝜕2 �̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
 𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

 
)

2

+
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐

𝜕3 �̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
 𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

2

+
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

𝜕3�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐
2 𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

 
)∆𝑇𝑑𝑒𝑤,𝑠𝑢𝑐

2 ∆𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
2

+(
1

2
(
𝜕2 �̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2

)

2

+
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐

𝜕3 �̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐
3

)∆𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
4

+(
1

2
(
𝜕2 �̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
2

)

2

+
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

𝜕3 �̂̇�𝑐𝑜𝑚𝑝

𝜕𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠
3

)∆𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠
4

 

(15) 

The partial derivatives in Eq. (14) and (15) are calculated analytically by taking the partial derivative 

of the compressor map with respect to the compressor suction and discharge dew point temperature.  
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The uncertainty due to inputs is the sum of the low-order and high-order uncertainties and can be 

calculated by Eq. (16). 

∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑖𝑛𝑝𝑢𝑡 = √∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑖𝑛𝑝𝑢𝑡,𝑙𝑜𝑤
2 +∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑖𝑛𝑝𝑢𝑡 ,ℎ𝑖𝑔ℎ

2  
(16) 

The low-order uncertainty due to inputs without the uncertainty due to the equation of state is usually 

the only uncertainty computed as the uncertainty of the compressor map. 

Uncertainty due to training data 

Uncertainty due to training data is the uncertainty component caused by the propagation of uncertainty 

of training data to the regression coefficients in the compressor map. According to Cheung and Bach 

(2015), the uncertainty component, assuming all training data to be uncorrelated, can be calculated by Eq. 

(17). 

∆�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑢𝑛𝑐𝑜𝑟𝑟 =

√

  
  
  
  
  
  
  
  
  
 

∑ (∑ (
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝛽𝑖

𝜕𝛽𝑖

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑡𝑟𝑎𝑖𝑛,𝑗

) Δ𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑡𝑟𝑎𝑖𝑛,𝑗

𝑚

𝑖 =1
)

2
𝑛

𝑗 =1

+∑ (∑ (
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝛽𝑖

𝜕𝛽𝑖

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑗
)Δ𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑗

𝑚

𝑖=1
)

2
𝑛

𝑗 =1

+∑  
𝑛

𝑗 =1
(∑ (

𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕𝛽𝑖

𝜕𝛽𝑖

𝜕�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑗

)Δ�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑗

𝑚

𝑖=1
)

2

 

(17) 

However, Eq. (17) does not consider the correlation effect between data points in the training data. In 

the training data, all compressor suction dew point temperatures come from the same pressure transducer at 

the compressor suction. This means that the uncertainties of all compressor suction dew point temperature 

in the training data are correlated because they are measured by  the same sensors and hence sensors with 

the same calibration reference, and the propagation of uncertainties from the compressor suction dew point 

temperatures should account for the correlation. This means that another uncertainty component is needed 

to calculate the uncertainty due to correlation of training data. By following the procedure in ASME PTC 

19.1-2013 (ASME 2013) and considering the compressor discharge dew point temperature and power 

consumption similarly, the uncertainty due to correlated training data is given as Eq. (18). 
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∆�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑐𝑜𝑟𝑟 =

√
 
  
  
  
  
  
 
  
  
  
  
 
  
  
  
  
  
 
  
  
  
  

 

2∑ ∑

(

  
 
∑ (

𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕�̂�𝑖

𝜕�̂�𝑖

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑡𝑟𝑎𝑖𝑛,𝑗
) Δ𝑇𝑑𝑒𝑤,𝑠𝑢𝑐,𝑡𝑟𝑎𝑖𝑛 ,𝑗 ⋅

𝑚

𝑖=1

(
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕�̂�𝑖

𝜕�̂�𝑖

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑡𝑟𝑎𝑖𝑛,𝑘

)Δ𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑡𝑟𝑎𝑖𝑛,𝑘
)

  
 𝑛

𝑘=𝑗+1

𝑛−1

𝑗 =1

+2∑ ∑

(

  
 
∑ (

𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕�̂�𝑖

𝜕�̂�𝑖

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑗
) Δ𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑗 ⋅

𝑚

𝑖=1

(
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕�̂�𝑖

𝜕�̂�𝑖

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑘
)Δ𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑘

)

  
 𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

+2∑ ∑

(

 
 
 
∑ (

𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕�̂�𝑖

𝜕�̂�𝑖

𝜕�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛 ,𝑗

)∆�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑗 ⋅

 

 
𝑚

𝑖=1

(
𝜕�̂̇�𝑐𝑜𝑚𝑝

𝜕�̂�𝑖

𝜕�̂�𝑖

𝜕�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑘

)∆�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑘
)

 
 
 𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 

(18) 

With the absence of squared terms in Eq. (18), the uncertainty due to correlated training data can be a 

complex number, unlike other uncertainty components which are real and positive. 

All partial derivatives in Eq. (17) and (18) are calculated analytically, and the details of the analytical 

partial derivatives of coefficients with respect to training data points are listed in the Appendix A for 

reference. 

The overall uncertainty due to training data is calculated by Eq. (19). 

∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛 = √∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑢𝑛𝑐𝑜𝑟𝑟
2 + ∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑐𝑜𝑟𝑟

2  
(19) 

Uncertainty due to model random error 

The linear regression equation contains an error due to the insufficiency of the model to represent the 

mathematical surface of the model output completely (Ɛ in Eq. (1)), and linear regression assumes that the 

error is normally distributed around zero with some finite variance. Unlike the aforementioned uncertainty 

due to training data which is zero if all training data are measured with zero uncertainty, Ɛ  (as defined in 

equation 1) is finite as far as there is a difference between the model result and the corresponding 

measurment in the training data. This is possible if the model under consideration does not account for all 

effects comprehensively (e.g. change of surrounding temperature around the compressor and hence 

compressor heat loss), and its contribution to the uncertainty of the map should be accounted for in addition 
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to the uncertainty due to training data. Statistical textbooks (e.g. Montgomery 2005) illustrate that the error 

can be approximated with the expression in Eq. (20). 

∆�̂̇�𝑐𝑜𝑚𝑝 ,𝑚𝑜𝑑𝑒𝑙 = 𝜎√1 + 𝑥𝑇(𝑿𝑡𝑟𝑎𝑖𝑛
𝑇 𝑿𝑡𝑟𝑎𝑖𝑛)

−1�⃑�, 
(20) 

where the mean square error σ in Eq. (20) can be calculated by Eq. (21). 

𝜎 = √
∑ (𝑦𝑡𝑟𝑎𝑖𝑛 ,𝑖 − 𝑥𝑇 �⃑�

̂
)2𝑛

𝑖=1

𝑛 − 𝑚
 

(21) 

Eq. (20) gives the uncertainty due to model random error, and this is also the prediction uncertainty 

with error in the predictor variables and the model coefficients as specified in the Informative Annex A in 

ASHRAE Guideline 2–2010 (ASHRAE 2010a). 

Roy and Oberkampf (2011) describe a method using validation metric to obtain the uncertainty due to 

model random error by extra experimental observations. However, the method needs extra experimental 

observations and is not used in this paper. There are also other types of models with a different true 

equation as Eq. (1) such as Ruch et al. (1993) that accounts for correlation between temperature data and 

time and the Bayesian calibration method in Kennedy and O’Hagan (2001) that considers user-defined 

probability distributions of coefficients and tunes the distributions according to the training data  for the 

estimation of coefficients. Their uncertainties from model random error in these models will be calculated 

with other forms of equations. 

Uncertainty due to output 

Uncertainty of compressor map output should represent the probable difference between the true value 

and the model output. However, because the map is trained by measured compressor power consumption, 

the summation of uncertainty components of compressor map output from other sources would only 

represent the probable difference between the estimated and measured value of the compressor powe r 

consumption. To correctly represent the uncertainty, another component of uncertainty must be added. This 

is the uncertainty due to outputs and can be approximated by Eq. (22). 

Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑜𝑢𝑡𝑝𝑢𝑡 =
�̂̇�𝑐𝑜𝑚𝑝

𝑛
∑

Δ�̇�𝑡𝑟𝑎𝑖𝑛 ,𝑖

�̇�𝑡𝑟𝑎𝑖𝑛 ,𝑖

𝑛

𝑖=1
 

(22) 
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Eq. (22) is only applicable to regression models with a normally distributed error term defined in the 

same way as Eq. (1). If the error term is defined differently like the error term that is dependent on the input 

variables as the one in Kennedy and O’Hagan (2001), then Eq. (22) will not be applicable to the regression 

model.  

Other negligible uncertainties 

One of the uncertainties to be neglected is uncertainty due to numerical approximation. Roy and 

Oberkampf (2011) describe three sources of uncertainty due to numerical approximation: uncertainty due to 

discretization, uncertainty due to incomplete iteration and uncertainty due to computational round off that 

are all results. Because linear regression does not involve discretization and iterative calculation and the 

computation involves 16 significant figures, the uncertainty due to numerical approximation in the 

compressor map output can be assumed to be negligible. 

Other systematic uncertainties due to conceptual errors in Moffat (1988) are also neglected in this 

study. Their magnitude varies dramatically depending on the causes of the error, and examples include 

uncertainties due to manufacturing process, system or sensor ageing, and sensor installation location. If it is 

caused by a small change of sensor installation location by a model user, it can be negligible. However, if it 

is caused by significant ignorance of a model user such as using the compressor suction temperature instead 

of compressor suction saturation temperature at the input of the compressor map, they can become more 

significant than the uncertainties discussed in this manuscript. Although they can be the largest among all 

uncertainties according to Moffat (1988), they are neglected because of the lack of data to estimate them 

and they are only significant due to defects or model user ignorance that is too subjective to be quantified 

(e.g. application of models under conditions they were not developed for). Uncertainties due to 

manufacturing and ageing are created when a map output is used to estimate the power consumption of a 

compressor of the same model but in a different setup at a different point of usable lifetime. Because its 

quantification can only be done by testing multiple compressors of the same model from a production line 

with a well-balanced test matrix and some design of experiments methods, it is assumed to be negligible in 

this study for simplicity. However, if a model of compressor is not produced with consistent quality, this 

uncertainty will become significant and should be taken into account for correct uncertainty calculation. 
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Likewise, uncertainty due to sensor installation location is created if the inputs are taken from sensors that 

are installed differently than the sensors used to collect the training data. While they are often small, 

incorrect sensor installation may increase this uncertainty significantly. 

Overall standard uncertainty 

Because the uncertainty components are not correlated with each other, the overall standard 

uncertainty of the compressor map output can be calculated by the sum of squares of the u ncertainty 

components as shown in Eq. (23). 

Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑠𝑡𝑑 = √Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑖𝑛𝑝𝑢𝑡
2 + Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛

2 + Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑚𝑜𝑑𝑒𝑙
2 + Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑜𝑢𝑡𝑝𝑢𝑡

2  
(23) 

Overall expanded uncertainty 

According to ASME PTC 19.1-2013, the standard uncertainty is multiplied by a coverage factor to 

illustrate the level of confidence and the accepted practice uses a 95% level of confidence. Because the 

number of training data points of the compressor map may be smaller than 60 in this study, the Student’s 𝑡 

value of the Student’s 𝑡 distribution is used to calculate the expanded uncertainty as shown in Eq. (24). 

Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑒𝑥𝑝 = 𝑡𝑛−𝑚,0.95 ⋅ Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑠𝑡𝑑  (24) 

Case Study 

To examine if the method can calculate extrapolation uncertainties of compressor maps appropriately, 

compressor calorimeter testing data from Shrestha et al. (2013a) and Shrestha et al. (2013b) are used. The 

tests were done to compare the performance of compressors using different refrigerants. Because this 

method uses uncertainty of equation of state, only compressor data using refrigerants with well-defined 

equations of state are considered in this study. The specifications of the compressors are listed in Table 2. 

 

Table 2: Specification of compressors 

Specification 
Compressor 1 

(Shrestha et al. 2013a) 

Compressor 2 

(Shrestha et al. 2013b) 

Compressor type Hermetic scroll 

Frequency [Hz] 60 

Voltage [V] 208/230 
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Displacement volume [cm3 rev-1] 20.3 51.0 

Refrigerant R410A R404A 

Rated power consumption [W] 2170 3320 

Superheat [K] 11.1 

The compressors were tested in calorimeters following the ANSI/ASHRAE Standard 23.1-2010 

(ASHRAE 2010b). The uncertainties and locations of the sensors used in the setup are tabulated in Table 3. 

Table 3: Uncertainties of sensors used in the setup 

Sensors Locations Measurement range Uncertainty 

Power energy meter 
Compressor power 

consumption 
Not available from the 

data source 
±0.5% of the measured 

value 

Pressure transmitter 1 Compressor discharge 0 – 5170 kPa ±0.25% full scale 

Pressure transmitter 2 Compressor suction 0 – 1380 kPa ±0.25% full scale 

Refrigerant mass 

flowmeter 
Condenser outlet 

Not available from the 

data source 

±0.10% of the measured 

value 

Each compressor was tested under a variety of conditions. To analyze how different sets of training 

data affect the size of extrapolation uncertainty, each data set of compressor data is divided into 3 subsets. 

The operating conditions of the testing data and the subsets are shown in Figure 2. 

 

(a) Compressor 1 (b) Compressor 2 

Figure 2: Operating conditions in compressors tests and the subsets defined for extrapolation uncertainty studies 

Figure 2 shows the range of all testing conditions and the subsets for each compressor. Compressor 1 

data has 66 available points with compressor discharge dew point temperature ranging from 21.1°C to 60°C 

and compressor suction dew point temperature ranging from -12.2°C to 12.8°C. Compressor 2 data has 63 

available points with compressor discharge dew point temperature ranging from 21.1°C to 60°C and 

compressor suction dew point temperature ranging from -23.3°C to 1.67°C. All Data Set in Figure 2 

consists of all testing data points. Set Mid is designed to include data points at the center of the operating 

range only, Set Low is designed to include data points with lower dew point temperatures relative to the 
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operating range only, and Set High is designed to include data points with high compressor suction dew 

point temperature only.  

The choice of training data in Figure 2 is arbitrary in order to demonstrate how the uncertainty 

quantifies the effect of extrapolation on the model. In reality, compressor maps are created with at least 14 

data points scattered across the entire operating range as shown in Aute et al. (2015), and tech niques in 

design of experiments such as Latin-Hypercube-Sampling or D-optimality may be used to choose the 

appropriate data points (Montgomery 2005).  

The sets of each compressor are used to train their compressor maps separately, and their map outputs 

and map output uncertainties of all data points are calculated and compared in the next section. 

Although it can be easily observed if a data point lies outside a set and if its corresponding estimation 

extrapolates from a map in Figure 2, it is necessary to define a metric for the degree of extrapolation to 

analyze the results from all 8 compressor maps. In this case study, the normalized degree of extrapolation is 

quantified by Eq. (25). 

Normalized degree of extrapolation

= √(
𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 − 𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑐𝑙𝑜𝑠𝑒

𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑡𝑟𝑎𝑖𝑛,𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛
)

2 

+ (
𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠 − 𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑐𝑙𝑜𝑠𝑒

𝑇𝑑𝑒𝑤 ,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛
)

2 

 

(25) 

Eq. (25) shows an equation to calculate the normalized degree of extrapolation which is the 

normalization of the shortest distance of an operating point on the boundary of the training data of a map in 

Figure 2. While the equation is intuitive to solve for an operating range with a well-defined boundary as 

shown in Figure 2, the operating conditions of some compressor maps may not align with the compressor 

testing data as regularly as Figure 2 and the compressor operating range may not be as rectangular as 

Figure 2 (Winandy et al. 2002; Jähnig et al. 2002). The equation will hence become difficult to be solved in 

those situations. 

In addition to Eq. (25), a few metrics are needed to summarize the accuracy and uncertainty of the map 

results. To summarize the accuracy of the maps, the coefficient of variation from ASHRAE Guideline 14-

2014 (ASHRAE 2014) to assess building model accuracy is used. Its calculation is illustrated in Eq. (26), 

and a smaller value implies a more accurate model. 
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𝐶𝑂𝑉 =
Sample standard deviation

Mean of the map outputs
=
𝑛√∑ (�̂̇�𝑐𝑜𝑚𝑝 ,𝑖 − �̇�𝑐𝑜𝑚𝑝 )

2𝑛
𝑖=1

√𝑛− 1 ∑ �̇�𝑐𝑜𝑚𝑝 ,𝑖
𝑛
𝑖=1

 

(26) 

The other metric is relative uncertainty which compares the magnitude of the uncertainty with the map 

outputs, and a larger relative uncertainty implies that the value of the map output may deviate more with its 

true value. Relative uncertainty is calculated per Eq. (27). 

Relative overall uncertainty =
Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑒𝑥𝑝

�̂̇�𝑐𝑜𝑚𝑝

 
(27) 

Similarly, a relative uncertainty of an uncertainty component as calculated in Eq. (28) is used. 

Relative uncertainty of an uncertainty component =
Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑒𝑑

�̂̇�𝑐𝑜𝑚𝑝
 

(28) 

where Δ�̂̇�𝑐𝑜𝑚𝑝 ,𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑒𝑑  in Eq. (28) can be any uncertainty component.  

Results and Discussion 

Accuracy of maps and example application of the method 

To examine the accuracy of the maps within the training data points, the coefficients of variation of 

different maps calculated from their estimation over their training data points are tabulated in Table 4. 

Table 4: Coefficients of variation over their training data points for all trained 

compressor maps 

Compressor 1 
Coefficient 

of variation 

Number of 

training 

data points 

Compressor 2 
Coefficient 

of variation 

Number of 

training data 

points 

Map from All Data 
Set 

0.0021 66 
Map from All Data 

Set 
0.0013 63 

Map from Set Mid 0.0004 16 Map from Set Mid 0.0002 16 

Map from Set Low 0.0021 39 Map from Set Low 0.0012 39 

Map from Set High 0.0010 25 Map from Set High 0.0007 25 

Table 4 shows that the coefficients of variation for all maps over their training data points are smaller 

than 1%, and hence the maps should be very accurate over the range of their training data points. However, 

the maps may not be accurate when extrapolated. To illustrate the potential inaccuracy, the estimated power 

consumption of map from Set High of both compressors is plotted in Figure 3. 
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 3: Comparison between measured and estimated power consumption for the map from Set High of both 

compressors with overall expanded uncertainty of map outputs 

Figure 3 shows that maps from Set High of both compressor’s maps are able to estimate the power 

consumption at the conditions of training data points correctly. However, when the uncertainty of the 

estimation is high at conditions different from the training data, the map from Set High of compressor 1 

cannot predict the power consumption accurately while the map from Set High of compressor 2 can predict 

accurately.  

Figure 3 also demonstrates an example application of the uncertainty calculation method. In Figure 

3(a), some data points are estimated with small uncertainty values and high accuracy despite their absence 

in the training data. This shows that the estimation of power consumption at these data points can be trusted 

and used for other purposes. However, the ones with large uncertainties are also associated with high 

inaccuracy, indicating that they cannot be trusted unless training data at conditions other that the Set High 

in Figure 2 are introduced. Although the rule is not well followed by the results in Figure 3(b), this is true 

for other choices of sets as shown in the Appendix B, indicating that the uncertainty calculation method can 

be used to identify if the estimation of power consumption under certain condition is reliable and can be 

trusted according to its training data conditions. 

Change of overall expanded uncertainty with degree of extrapolation 
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In order to analyze if the overall expanded uncertainty can represent the degree of extrapolation at a 

data point, the normalized degrees of extrapolation from Eq. (25) is plotted with the relative overall 

uncertainty for all maps defined in Figure 2 as shown in Figure 4. 

 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 4: Change of relative overall expanded uncertainty with normalized degree of extrapolation for all maps 

Figure 4 shows that for maps in both compressors, the relative overall uncertainty depends strongly on 

the normalized degree of extrapolation and increases with an increase in the normalized degree of 

extrapolation. A similar behavior was observed in Cheung and Bach (2015) for an increase in extrapolation, 

there expressed in terms of minimum °C distance to nearest training data point. 

Change of overall expanded uncertainty with map accuracy 

Figure 5 is plotted to understand how the uncertainty changes with map accuracy.  
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 5: Change of relative overall expanded uncertainty with map accuracy in all maps 

Figure 5(a) for compressor 1 shows that the accurate maps have low relative uncertainty and 

uncertainty increases with an increase in map inaccuracy as found in Cheung and Bach (2015). For 

compressor 2, Figure 5(b) shows that maps from Set Mid and Low show the similar behavior as maps in 

compressor 1, however, map from Set High has almost same accuracy for different values of overall 

relative uncertainty. This shows that the map accuracy does not have a definite relationship with relative 

overall uncertainty and maps that are accurate at extrapolation may still yield large relative overall 

uncertainty. 

Figure 5 also shows an approach for a user to justify the use of an extrapolation scenario based on the 

overall expanded uncertainty. A user can use the maximum relative overall expanded uncertainties at the 

training data points to set a threshold, and reject any extrapolation cases with overall expanded uncertainty 

is higher than that threshold. For example, the maximum relative overall expanded uncertainty at the 

training data points of the map generated from Set Mid of Compressor 2 is 0.0313. If a user uses the map to 

estimate the power consumption of all Compressor 2 data points in Figure 2(b) and rejects cases with 

relative overall uncertainties higher than 0.0313, the user can keep 19 out of 47 ext rapolation cases with an 

average map accuracy at 0.75% among the accepted extrapolation cases and achieves a good accuracy 

relative to the average map accuracy at 0.44% for the training data points. If a user can tolerate higher 

inaccuracy at the extrapolation cases, a threshold higher than the maxmium value can be set  to match the 

needs of different users .   
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Change of uncertainty components with extrapolation 

To find the uncertainty component that increases with extrapolation, the squares of uncertainty 

components of map outputs in all maps are plotted with the normalized degree of extrapolation as shown in 

Figure 6. 

 

 

(a) Compressor 1   

(b) Compressor 2 

Figure 6: Change of uncertainty components in map outputs with normalized degree of extrapolation in all maps  

The uncertainty components in Figure 6 are squared because uncertainty due to correlated training data 

can be complex. It shows that the uncertainty due to model random error increases as normalized degree of 

extrapolation increases. This shows that the uncertainty due to model random error is responsible for the 

increase of the uncertainty as the compressor maps extrapolate. The significance of other uncertainty 

components remains the same with extrapolation, and it can be listed in a descending order as the 
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uncertainty due to training data, the low-order uncertainty due to inputs, the uncertainty due to output and 

the high-order uncertainty due to inputs, which is insignificant and can be neglected.  

The results in Figure 6 also show that the calculation method is different from that in Aute et al. (2015) 

because their method, as shown by Coleman and Steele (2009) to be equivalent to the uncertainty due to 

inputs and uncertainty due to training data, would under-predict the uncertainty when the degree of 

extrapolation is higher than 1.0 and the uncertainty due to model random error is significant. Hence the 

method presented in this paper will lead to better predictions than the method presented by Aute et al. 

(2015) when extrapolation occurs. 

One major difference between Figure 6 and the conclusion in Cheung and Bach (2015) is that the 

uncertainty due to training data in Figure 6 does not increase with extrapolation unlike the conclusion in 

Cheung and Bach (2015). The reason is that Cheung and Bach (2015) does not include the uncertainty due 

to correlated training data as calculated in Eq. (18). 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 7: Change of components of uncertainty due to training data in map outputs with normalized degree of 

extrapolation in all maps 

Figure 7 shows that the uncertainty due to uncorrelated training data increases with extrapolation as 

found in Cheung and Bach (2015). However, the correlation of training data that is decreasing with 

extrapolation in Figure 7 is not considered in Cheung and Bach (2015). Unlike other uncertainty 

components, the square of the uncertainty due to correlated training data can be negative because all of its 

terms in Eq. (18) are not restricted to be positive. As maps extrapolate, the reduction of the uncertainty of 
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correlated data partially offsets the increase of the uncertainties of the uncorrelated data, resulting in 

relatively constant uncertainty due to training data in Figure 6. Hence the uncertainty due to correlated 

training data is not negligible if uncertainty due to training data is calculated. 

Change of uncertainty due to training data with choice of training data 

To examine the choices of training data affect uncertainty due to training data, the relative 

uncertainties from training data of different maps are compared with each other as shown in Figure 8. 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 8: Comparison of uncertainties due to training data from different maps at all operating conditions 

Figure 8 shows that the uncertainties due to training data from different maps are not significantly 

different for both compressors and all of them decrease with higher compressor power consumption. This 

shows that the magnitude of uncertainty due to training data does not depend on the choice of training data 

of compressor maps but on other factors such as the input conditions of the compressor or the magnitude of 

the training data. 

Application of the method to other types of compressor map outputs 

The 10-coefficient map in Eq. (6) is not only applied to power consumption estimation but also to 

other variables of compressors such as refrigerant mass flow rate and cooling capacity of a vapor 

compression system. To examine if the uncertainty calculation method is applicable to other types of 

outputs, the method is applied to the refrigerant mass flow rates measured in Shrestha et al. (2013a) and 

Shrestha et al. (2013b) in a similar manner, and the results are shown in Figure 9 and Figure 10. 
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 9: Change of relative overall expanded uncertainty with normalized degree of extrapolation for all maps 

estimating refrigerant mass flow rates 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 10: Change of overall expanded uncertainty with map deviation in all maps estimating refrigerant mass flow 

rate  

Figure 9 and Figure 10 show similar results as the power consumption compressor maps. Extrapolation 

cases show high overall expanded uncertainties and high overall expanded uncertainties refer to cases with 

poor map accuracy. Hence the method is also applicable to other types of compressor maps. 

Conclusions and future work 

In summary, a method to calculate the uncertainty of compressor map output is developed. The method 

considers the effects of the mathematical structure of the map, the choice of training data, the uncertainties 
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of the training data, the uncertainties of related measurement devices, and the equation of state of 

refrigerants. It calculates the map output uncertainty by 4 major components and is tested with case studies 

by measurement data from 2 compressors. The results show that high -order uncertainties are negligible 

despite the cubic structure of the map. With little extrapolation, the uncertainty due to training data is the 

most significant uncertainty component though uncertainty due to inputs is the most common one to be 

calculated. When the maps extrapolate, their uncertainties due to model random error increases with map 

extrapolation and may become larger than other components. Although the uncertainty due to model 

random error is a good indicator of extrapolation inaccuracy, extrapolation may not necessarily imply 

inaccuracy of the maps and hence the method occasionally exaggerates the inaccuracy problem due to 

extrapolation, which would require future work for improvement. By calculating the overall expanded 

uncertainty of a compressor map and defining an accuracy threshold, a user can decide if an extrapolation 

case is acceptable. The method allows the quantification of the extrapolation effect of the compressor 

model and helps to verify thermal system models that simulate off-design conditions (ASME 2006; 

Coleman and Steele 2009). Such conditions occur in applications that include faulted vapor compression 

systems, cold climate heat pumps, air conditioner start-up and shutdown processes, pump down operation 

of refrigeration systems, etc. 

In the future, the uncertainty calculation framework in this paper will be used to compare the 

extrapolation capability of different types of compressor models to examine if models using more physical 

rules are more reliable in extrapolation cases. The framework will also be used to develop a general rule of 

thumb to determine when an extrapolation case is acceptable for different types of compressor models and 

compressors. 

Nomenclature 

𝛽 Coefficient of a 10-coefficient map [unit varies] 

COV Coefficient of variation [dimensionless] 

𝜀 Error between true value and estimation of a variable from a linear model [unit varies] 

Δ Uncertainty of a variable [unit varies] 

m Number of coefficients of 10-coefficient map [dimensionless] 

n Number of training data points [dimensionless] 
P Pressure [kPa] 

r Relative uncertainty [dimensionless] 

𝜎 Mean square error [W] 

T Temperature [K] 

𝑡𝑛−𝑚,0.95 Student’s 𝑡 value for a 95% confidence interval of estimates from equations with n training data 
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points and m coefficients 

�̇� Power consumption [W] 

x Independent variable [unit varies] 
X Matrix of independent variables [unit varies] 

y Dependent variable [unit varies] 

Accent 

⃑⃑ ⃑⃑  
Vectorized 

̂  Estimated 

Subscript 

close Closest operating point on the boundary of the training data of a compressor map 

comp Compressor 

corr Correlated 

dew Dew point 
dis Discharge 

EOS Equation of state 

exp Expanded 

full Full-scale 

high High-order 
i ith entry of a variable or coefficient 

input Uncertainty due to input 

j jth entry of a variable 

low Low-order 
max Maximum 

mea Measured 

min Minimum 

model Uncertainty due to model random error 

output Uncertainty due to output 
P Pressure transducer 

std Standard 

suc Suction 

train Training data 

true True model of linear regression 
uncorr Uncorrelated 
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Appendix A Analytical Calculation of Partial Derivatives with Respect to Training 

Data Points in Eq. (17) and (18) 

This appendix describes the analytical derivation of the formula to calculate the partial derivatives of 

coefficients with respect to training data observations in Eq. (17) and (18).  

Calculating partial derivatives of coefficients with respect to training data observations 

of compressor power consumption 

To calculate the partial derivative, the product rule can be used to split the derivative of coefficients as 

Eq. (29). 

𝜕𝛽

𝜕�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛,𝑗

=
𝜕𝛽

𝜕�⃑⃑⃑⃑̇�𝑡𝑟𝑎𝑖𝑛

𝜕�⃑⃑⃑⃑̇�𝑡𝑟𝑎𝑖𝑛

𝜕�̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛 ,𝑗

 

(29) 

where j means the j
th

 entry in the vector �⃑⃑⃑⃑̇�𝑡𝑟𝑎𝑖𝑛  

The first partial derivative in Eq. (29) can be calculated from the estimation equation of the 

coefficients as Eq. (30). 

𝜕𝛽

𝜕�⃑⃑⃑⃑̇�𝑡𝑟𝑎𝑖𝑛

= (𝑿𝒕𝒓𝒂𝒊𝒏
𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)

−1𝑿𝒕𝒓𝒂𝒊𝒏
𝑻  

(30) 

The second derivative in Eq. (29) is a zero vector except the j
th

 entry which is one, and 
𝜕𝛽𝑖

𝜕�̇�𝑐𝑜𝑚𝑝,𝑡𝑟𝑎𝑖𝑛,𝑗
 in 

Eq. (17) and (18) is the i
th

 entry in the vector 
𝜕�⃑⃑⃑�

𝜕�̇�𝑐𝑜𝑚𝑝,𝑡𝑟𝑎𝑖𝑛,𝑗
. 

Calculating partial derivative of coefficients with respect to training data observations 

of compressor suction and discharge dew point temperature 

By matrix calculus, the partial derivative of coefficients with respect to a compressor suction dew point 

temperature in the training data can be obtained by differentiating Eq. (3) into multiple parts as Eq. (31) to 

(34). 

𝜕𝛽

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

= [
𝜕(𝑿𝒕𝒓𝒂𝒊𝒏

𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)
−1

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

𝑿𝒕𝒓𝒂𝒊𝒏
𝑻 + (𝑿𝒕𝒓𝒂𝒊𝒏

𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)
−1

𝜕𝑿𝒕𝒓𝒂𝒊𝒏
𝑻

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

] �⃑⃑⃑⃑̇�𝑐𝑜𝑚𝑝 ,𝑡𝑟𝑎𝑖𝑛 
(31) 

𝜕(𝑿𝒕𝒓𝒂𝒊𝒏
𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)

−1

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

= −(𝑿𝒕𝒓𝒂𝒊𝒏
𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)

−1
𝜕(𝑿𝒕𝒓𝒂𝒊𝒏

𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑗
(𝑿𝒕𝒓𝒂𝒊𝒏

𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)
−1 

(32) 
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𝜕(𝑿𝒕𝒓𝒂𝒊𝒏
𝑻 𝑿𝒕𝒓𝒂𝒊𝒏)

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐,𝑗
=

𝜕𝑿𝒕𝒓𝒂𝒊𝒏
𝑻

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

𝑿𝒕𝒓𝒂𝒊𝒏 +𝑿𝒕𝒓𝒂𝒊𝒏
𝑻

𝜕𝑿𝒕𝒓𝒂𝒊𝒏

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

 
(33) 

𝜕𝑿𝒕𝒓𝒂𝒊𝒏
𝑻

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑗
= (

𝜕𝑿𝒕𝒓𝒂𝒊𝒏

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐,𝑗
)

𝑇

 
(34) 

𝜕𝑿𝒕𝒓𝒂𝒊𝒏

𝜕𝑇𝑑𝑒𝑤,𝑠𝑢𝑐,𝑗
 is a matrix with zero values except its j

th
 row as shown in Eq. (35). 

𝜕𝑿𝒕𝒓𝒂𝒊𝒏

𝜕𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗

=

[
 
 
 
 

0 ⋯ 0
⋮

0  1  0  2𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗   𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗  0  3𝑇𝑑𝑒𝑤 ,𝑠𝑢𝑐,𝑗
2   2𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑗𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗  𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗

2   0

⋮
0 ⋯ 0 ]

 
 
 
 

 

(35) 

The partial derivative of the i
th

 coefficient with respect to the j
th

 compressor suction dew point 

temperature in the training data can be obtained by selecting the i
th

 entry in the partial derivative of the 

coefficient vector in Eq. (31).  

The partial derivative of the coefficient vector with respect to compressor discharge dew point 

temperature in training data can be obtained by substituting the compressor suction dew point temperature 

from Eq. (31) to (34) by compressor discharge dew point temperature and calculating 
𝜕𝑿𝒕𝒓𝒂𝒊𝒏

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗
 by Eq. (36). 

𝜕𝑿𝒕𝒓𝒂𝒊𝒏

𝜕𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗
=

[
 
 
 
 

0 ⋯ 0
⋮

0  0  1  0  2𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗  𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗  0  𝑇𝑑𝑒𝑤,𝑠𝑢𝑐,𝑗
2   2𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 ,𝑗𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗  3𝑇𝑑𝑒𝑤,𝑑𝑖𝑠,𝑗

2

⋮
0 ⋯ 0 ]

 
 
 
 

 

(36) 
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Appendix B Parity Plots of Measured and Estimated Power Consumption of 

Different Compressor Maps Calibrated by Different Sets of Training Data 

This appendix includes the parity plots of the compressor maps to compare the measured and estimated 

compressor power consumption that are not included in the main body of the paper for readers’ reference.  

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 11: Comparison between measured and estimated power consumption for the Map from All Data Set of both 

compressors with overall expanded uncertainty of map outputs 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 12: Comparison between measured and estimated power consumption for the Map from Set Mid of both 

compressors with overall expanded uncertainty of map outputs 
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 13: Comparison between measured and estimated power consumption for the Map from Set Low of both 

compressors with overall expanded uncertainty of map outputs 
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Figures 

 

Figure 1: Flowchart of uncertainty propagation to the compressor map output 

 

(a) Compressor 1 (b) Compressor 2 

Figure 2: Operating conditions in compressors tests and the subsets defined for extrapolation uncertainty studies 

Uncertainty of 
pressure 

measurement in 
training data

Uncertainty due to 
equation of state

Uncertainty due to 
inputs

Uncertainty due to 
training data

Uncertainty due to 
outputs

Uncertainty of 
power 

measurement in 
training data

Other negligible 
uncertainties

Uncertainty due to 
model random 

error

Overall standard 
uncertainty

Overall expanded 
uncertainty

Uncertainty of 
dew point 

temperature 
for map inputs

Uncertainty of 
pressure 

measurement for 
map inputs

Uncertainty of 
dew point 

temperature in 
training data

20

25

30

35

40

45

50

55

60

65

-15 -5 5 15

D
e

w
p

o
in

t 
at

 c
o

m
p

re
ss

o
r 

d
is

ch
ar

ge
 [

°C
]

Dewpoint at compressor suction [°C]

Operating Range

All Data

Map 1

Map 2

Map 3

20

25

30

35

40

45

50

55

60

65

-25 -15 -5 5

D
e

w
p

o
in

t 
at

 c
o

m
p

re
ss

o
r 

d
is

ch
ar

ge
 [

°C
]

Dewpoint at compressor suction [°C]

Operating
Range

All Data Set

Set Mid

Set Low

Set High



Postprint for doi: 10.1080/23744731.2017.1372805 

Cheung, H., Sarfraz, O. and Bach, C. K. 

34 

 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 3: Comparison between measured and estimated power consumption for the map from Set High of both 

compressors with overall expanded uncertainty of map outputs 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 4: Change of relative overall expanded uncertainty with normalized degree of extrapolation for all maps 
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 5: Change of relative overall expanded uncertainty with map accuracy in all maps 
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(a) Compressor 1 
 

(b) Compressor 2 

Figure 6: Change of uncertainty components in map outputs with normalized degree of extrapolation in all maps  
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 7: Change of components of uncertainty due to training data in map outputs with normalized degree of 

extrapolation in all maps 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 8: Comparison of uncertainties due to training data from different maps at all operating conditions 
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 9: Change of relative overall expanded uncertainty with normalized degree of extrapolation for all maps 

estimating refrigerant mass flow rates 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 10: Change of overall expanded uncertainty with map deviation in all maps estimating refrigerant mass flow 

rate  
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 11: Comparison between measured and estimated power consumption for the Map from All Data Set of both 

compressors with overall expanded uncertainty of map outputs 

 

(a) Compressor 1 

 

(b) Compressor 2 

Figure 12: Comparison between measured and estimated power consumption for the Map from Set Mid of both 

compressors with overall expanded uncertainty of map outputs 
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(a) Compressor 1 

 

(b) Compressor 2 

Figure 13: Comparison between measured and estimated power consumption for the Map from Set Low of both 

compressors with overall expanded uncertainty of map outputs 
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Tables 

Table 1: Uncertainty of equations of states of different 

refrigerant 

Refrigerant Uncertainty Literature 

R22 0.2% of the dew point pressure Kamei et al. (1995) 

R404A 0.5% of the dew point pressure Lemmon (2003) 

R410A 0.5% of the dew point pressure Lemmon (2003) 

 

Table 2: Specification of compressors 

Specification 
Compressor 1 

(Shrestha et al. 2013a) 

Compressor 2 

(Shrestha et al. 2013b) 

Compressor type Hermetic scroll 

Frequency [Hz] 60 

Voltage [V] 208/230 

Displacement volume [cm3 rev-1] 20.3 51.0 

Refrigerant R410A R404A 

Rated power consumption [W] 2170 3320 

Superheat [K] 11.1 

 

 

Table 3: Uncertainties of sensors used in the setup 

Sensors Locations Measurement range Uncertainty 

Power energy meter 
Compressor power 

consumption 

Not available from the 

data source 

±0.5% of the measured 

value 

Pressure transmitter 1 Compressor discharge 0 – 5170 kPa ±0.25% full scale 

Pressure transmitter 2 Compressor suction 0 – 1380 kPa ±0.25% full scale 

Refrigerant mass 

flowmeter 
Condenser outlet 

Not available from the 

data source 

±0.10% of the measured 

value 

 

 

Table 5: Coefficients of variation over their training data points for all trained 

compressor maps 

Compressor 1 
Coefficient 

of variation 

Number of 

training 

data points 

Compressor 2 
Coefficient 

of variation 

Number of 

training data 

points 

Map from All Data 

Set 
0.0021 66 

Map from All Data 

Set 
0.0013 63 

Map from Set Mid 0.0004 16 Map from Set Mid 0.0002 16 

Map from Set Low 0.0021 39 Map from Set Low 0.0012 39 

Map from Set High 0.0010 25 Map from Set High 0.0007 25 

 


