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ABSTRACT 
 

There are various empirical and semi-empirical models to estimate the performance of compressors. While some 

studies support the use of empirical methods for their high accuracy with the available experimental observations of 

compressor performance, others claim that semi-empirical methods can estimate the performance at extrapolation 

conditions more reliably. To understand if these claims are true, quantitative comparison of various types of 

compressor models was conducted based on uncertainty analysis. But these methods evaluate the accuracy and 

uncertainty of the models separately, and it is difficult for model users to comprehend their results. In this paper, the 

comparison of model accuracy and model uncertainty is combined together using a scoring method for probabilistic 

forecasting methods called interval score. The calculation of interval scores is widely used in the meteorological field 

to compare the accuracy of weather models with uncertainty outputs. This study uses interval scores of different 

compressor mass flow rate models to compare the performance five different empirical and semi-empirical compressor 

models with data from two compressors. The results of the comparison show that the most reliable model is a model 

that does not use redundant empirical coefficients nor physical principles, but even the most reliable model may fail 

to explain the compressor performance well under extrapolation. 

 

1. INTRODUCTION 
 

There are three main categories of compressor models to facilitate different applications: physical (white-box) models, 

empirical (black-box) models and semi-empirical (gray-box) models (Rasmussen, 2000). Physical models are 

developed based on basic physical principles such as mechanics, kinematics, thermodynamics and heat transfer to 

describe the compression of vapor inside a compressor. They are developed to improve compressor design processes 

by reducing time for unnecessary prototyping and testing of bad compressor designs. Empirical models are built based 

on empirical equations with few physical principles for fast computation of compressor performance. They contain 

empirical parameters that are estimated by regression based on observations of compressor performance (training 

data) under different operating conditions. One example is the commonly used 10-coefficient map of compressors 

which are cubic equations of evaporating temperature and condensing temperature in the ANSI/AHRI Standard 540-

2004 (AHRI, 2004). Their simple structure and computation help engineers to design equipment using different 

compressors quickly. Semi-empirical models are modification of empirical models by adding mathematical 

expressions of some simple physical principles into empirical models. Although they contain fewer empirical 

parameters than empirical models and are often less accurate than empirical models at the training data points, their 

developers claim that semi-empirical models are less likely to overfit than empirical models and perform better at 

conditions outside the given experimental conditions (Jähnig et al., 2000). 

 

Overfitting is an issue related to the use of a complex model that fit equally well as other simpler models (Hawkins, 

2004). Overfit models may show higher accuracy at training data points, but their uses of more independent variables 

and empirical parameters than their counterparts may add random variation to their behavior and result in poor 

accuracy during extrapolation. Extrapolation is the use of a model to predict with data points that are not within the 
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range of data in the model’s training data set. Hawkins (2004) demonstrated that the prediction error of a quintic 

polynomial during extrapolation can be much more severe than that of a linear equation despite the better prediction 

accuracy of the quintic polynomial at the training data points. Cawley and Talbot (2010) also described how overfitting 

of a machine learning algorithm would cause similar issues in a classification problem during extrapolation. These 

studies showed that overfitting weakened a model’s ability to extrapolate appropriately. 

 

Similar studies were also conducted for compressor models. Jähnig et al. (2000), Li (2012) and Aute et al. (2015) used 

extra testing data to investigate if accuracy of compressor models is worsened at extrapolation. While Jähnig et al. 

(2000) and Li (2012) found that the semi-empirical models perform better at extrapolation, Aute et al. (2015) showed 

otherwise with a much larger data set. To comprehensively describe the issue, uncertainty analyses were carried out 

in addition to these accuracy-based studies. Aute et al. (2016) and Cheung et al. (2017) studied the change of 

uncertainty of the AHRI 10-coefficient map as the compressor model extrapolates and found that the extrapolation 

issue can be mitigated by appropriate choices of training data. Cheung and Wang (2018) compared the uncertainty of 

empirical and semi-empirical models of compressor mass flow rates and found that both empirical and semi-empirical 

models can overfit when they become too complex and result in large uncertainty at their outputs.  

 

While these studies provided separate views of the extrapolation issue of empirical and semi-empirical compressor 

models in terms of model accuracy and uncertainty, they failed to provide a more comprehensive picture as 

demonstrated in other areas that use probabilistic forecasting techniques. For example, probabilistic weather forecast 

models were evaluated based on performance metrics calculated from both accuracy and uncertainty (Gneiting and 

Raftery, 2007). Similar techniques were used to evaluate electricity pricing forecast models (Weron, 2014). To 

compare the overall performance of empirical and semi-empirical compressor models under extrapolation conditions, 

model evaluation techniques for probabilistic forecasting models should be used. 

 

In this paper, interval scores that evaluate probabilistic forecasting models are calculated from various types of 

compressor models to compare the overall performance of empirical and semi-empirical models of compressors. The 

second section of the paper describes the evaluation method of the models using the interval scores, and the third 

section describes the five compressor mass flow rate models and two sets of compressor data being used in this study. 

The forth section evaluates the results of the evaluation, including the accuracy, uncertainty and interval scores of the 

compressor models, to examine if the use of physical principles can lessen the overfitting issue and improve the 

model’s performance under extrapolation. 

 

2. MODEL EVALUATION METHOD 
 

To compare the accuracy and uncertainty of various compressor models, their empirical parameters should first be 

estimated by nonlinear regression. After that, the uncertainty calculation method developed in Cheung and Wang 

(2018) is used to estimate the uncertainty values under various compressor operating conditions. The interval scores 

of the models can be calculated based on the accuracy and uncertainty at these conditions to compare the performance 

of the models. 

 

2.1 Nonlinear regression 
Both empirical and semi-empirical models contain empirical parameters. Ideally, they can be described as Equation 

(1). 

 

𝑦𝑡𝑟𝑢𝑒 = 𝑓(�⃗�𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒) + 𝜀 (1) 

 

Equation (1) shows how a nonlinear regression equation based on vectors of true values of independent variables and 

empirical parameters can be used to give the true values of a dependent variable with an error term in an ideal situation. 

But true values of any variable cannot be obtained in reality, and the prediction of a dependent variable by nonlinear 

regression is conducted by Equations (2) and (3). 

 

𝑦𝑝𝑟𝑒𝑑 = 𝑓(�⃗�𝑚𝑒𝑎 , 𝛽𝑝𝑟𝑒𝑑) (2) 

𝛽𝑝𝑟𝑒𝑑 = 𝑔(𝑿𝑡𝑟𝑎𝑖𝑛 , �⃗�𝑡𝑟𝑎𝑖𝑛) (3) 

 



 

 1540 Page 3 
 

24th  International Compressor Engineering Conference at Purdue, July 9-12, 2018 

Equation (2) shows how a non-linear regression uses measured values of independent variables and predicted values 

of empirical parameters to estimate a dependent variable. The predicted empirical parameters are estimated by 

Equation (3) using multiple measurement of independent variables and dependent variables in a set of training data. 

Nonlinear optimization methods are used to estimate the empirical parameters in Equation (3) so that the objective 

function in Equation (4), which is the sum of squares of deviations between the estimated and measured dependent 

variable at the training data points, is minimized (Nocedal and Wright, 2006). 

 

𝐽 = ∑(𝑦𝑡𝑟𝑎𝑖𝑛,𝑖 − 𝑓(�⃗�𝑡𝑟𝑎𝑖𝑛,𝑖 , 𝛽𝑝𝑟𝑒𝑑))
2

𝑖

 (4) 

 

2.2 Uncertainty calculation method of nonlinear regression models 
The uncertainty of nonlinear regression model Equation (1) can be estimated by calculating the 95% confidence 

interval of the predicted dependent variable as shown in Equation (5) (Cheung and Wang, 2018). 

 

Δ𝑦𝑝𝑟𝑒𝑑 = 𝑡𝑛𝑡𝑟𝑎𝑖𝑛−𝑞,0.95√Δ𝑦𝑖𝑛𝑝𝑢𝑡
2 + Δ𝑦𝑜𝑢𝑡𝑝𝑢𝑡

2 + Δ𝑦𝑡𝑟𝑎𝑖𝑛
2 + Δ𝑦𝑚𝑜𝑑𝑒𝑙

2 + Δ𝑦𝑛𝑢𝑚
2  (5) 

 

There are 5 uncertainty components in Equation (5): uncertainty due to inputs, uncertainty due to outputs, uncertainty 

due to training data, uncertainty due to model random error and uncertainty due to numerical method. For simplicity, 

this paper only includes the definition of the components. The mathematical details to calculate them can be found in 

Cheung et al. (2017) and Cheung and Wang (2018).  

 

2.2.1 Uncertainty due to inputs: Measured independent variables in Equation (1) carry measurement uncertainties such 

as sensor uncertainty and noise from the experimental environment. They propagate to form a part of the uncertainty 

of the estimated dependent variable in Equation (1) as demonstrated in Kline and McClintock (1953). 

 

2.2.2 Uncertainty due to outputs: Equation (3) uses measured values of dependent variables to estimate the empirical 

parameters, and the uncertainty of the estimated dependent variable in Equation (1) calculated from other sources is 

its uncertainty to the measured value of the dependent variable. However, the uncertainty calculated from Equation 

(5) should be the uncertainty of the dependent variable to its true value. Hence an uncertainty component that describes 

the uncertainty between the measurement of the dependent variable and its true value should be introduced, and this 

is the uncertainty due to outputs. 

 

2.2.3 Uncertainty due to training data: Training data in Equation (2) are collected by similar methods as the measured 

independent variables in Equation (1), and they carry similar type of uncertainties. Their uncertainties should therefore 

be propagated to the estimated dependent variable in Equation (1) through the estimation function of the empirical 

parameters in Equation (2) using the method in Kline and McClintock (1953) as well. 

 

2.2.4 Uncertainty due to model random error: The training data set in Equation (2) is only a subset of all possible 

independent and dependent variables in the entire applicable range of Equation (1). It can never be certain if the 

selection of training data in Equation (2) can account for the relationship of all possible pairs of independent and 

dependent variables. Even if the whole population of independent and dependent variables in the applicable range of 

Equation (1) is used to estimate the empirical parameters in Equation (2) and the estimates of the empirical parameters 

equal to their true values, there is always an uncertainty in the estimate of the regression equation due to the error term 

in Equation (1). These two sources of uncertainties form uncertainty due to model random error. 

 

2.2.5 Uncertainty due to numerical method: Since the estimation of empirical parameters in Equation (2) involves the 

use of numerical optimization methods, the effect of the uncertainty of numerical method to the estimated dependent 

variable should be calculated. Results of numerical optimization may change due to the uses of different threshold 

levels and different number of iterations, and this forms uncertainty in the empirical parameters. The uncertainty of 

the empirical parameters due to different threshold levels can be calculated by the Eigenvalue method (Oberkampf 

and Roy, 2010), and the uncertainty of the empirical parameters due to different number of iterations can be calculated 

by Richardson extrapolation (Oberkampf and Roy, 2010). 
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2.3 Calculation of interval scores 

Interval score of a nonlinear regression model is a performance metric to rate the model’s performance based on the 

model’s accuracy and uncertainty. It can be calculated after the estimation of the empirical parameters. At a given 

data point, the accuracy of the model can be rated based on the deviation between the estimated and measured 

dependent variable, and its uncertainty can be calculated based on the confidence interval of the estimated dependent 

variable. The deviation and uncertainty can be used to calculate the interval score as shown in Equation (6) (Gneiting 

and Raftery, 2007). 

 

𝑆1−𝛼(𝑦) =
2Δ𝑦𝑝𝑟𝑒𝑑 +

2

𝛼
(𝑦𝑝𝑟𝑒𝑑 − Δ𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑚𝑒𝑎) ∙ 𝕝 ((𝑦𝑝𝑟𝑒𝑑 − Δ𝑦𝑝𝑟𝑒𝑑) − 𝑦𝑚𝑒𝑎)

+
2

𝛼
(𝑦𝑚𝑒𝑎 − (𝑦𝑝𝑟𝑒𝑑 + Δ𝑦𝑝𝑟𝑒𝑑)) ∙ 𝕝 (𝑦𝑚𝑒𝑎 − (𝑦𝑝𝑟𝑒𝑑 + Δ𝑦𝑝𝑟𝑒𝑑))

 (6) 

 

where 𝕝(𝑥) is a step function which equals to 1 if x is greater than 0 and equals to 0 for all other cases. 

 

Equation (6) shows the mathematical function used to calculate an interval score. Its minimum value is the magnitude 

of the confidence interval which accounts for the effect of uncertainty on the performance of the model. It also depends 

on the difference between the measured value of the dependent variable and the lower and upper bounds of the 

confidence interval. If the measured dependent variable lies outside the confidence interval, the interval score will 

become larger than the confidence interval. This lowers the rating of a model for its failure to account for the behavior 

of the dependent variable within the model uncertainty and for potential significant systematic biases in the model. 

Hence a model performs better at a data point when its interval score is lower. 

 

2.4 Evaluation using interval scores 

Because a smaller interval score means a better model estimate, the model yields the smallest interval scores within 

the applicable range of a model should be the best model among all models being selected. The distribution of interval 

scores for each model at the available data points should also be evaluated to examine if a model is subjected to serious 

overfitting issues and extrapolation errors.  

 

3. MODEL AND TEST DATA SELECTED FOR CASE STUDY 
 

To examine if the number of empirical parameters and physical principles affect the model performance rated by 

interval scores, five compressor flow rate models with different number of physical principles are selected. They are 

applied to estimate the compressor mass flow rates of two compressors using the same set of training data. The interval 

scores of the compressor mass flow rate models at different operating conditions will be compared. 

 

3.1 Compressor mass flow rate models 
The five compressor mass flow rate models chosen for the study are the 10-coefficient compressor map with 

adjustment for compressor inlet superheat (Model I) (AHRI, 2004; Dabiri and Rice, 1981), a model with volumetric 

efficiency estimated by a quadratic polynomial (Model II) (Rasmussen, 2000), a model based on adiabatic 

compression (Model III) (Jähnig et al., 2000), a model based on adiabatic compression and back leakage loss (Model 

IV) (Arora, 2009) and a model based on isentropic compression (Model V) (Zakula et al., 2011). They are selected 

because they have the same dependent variable (compressor mass flow rate) and independent variables (compressor 

suction temperature, compressor suction pressure and compressor discharge pressure) but different number of 

empirical parameters and physical principles. Their differences of the number of empirical parameters and physical 

principles are tabulated in Table 1. 

 

Table 1: Summary of the number of empirical parameters and physical principles in the models 

Model Number of empirical parameters Physical principles involved 

I 11 a. Tuning of mass flow rate by compressor suction density 

II 6 a. Definition of compressor volumetric efficiency 

III 3 a. Definition of compressor volumetric efficiency 

b. Adiabatic compression 

c. Compressor suction pressure loss 

IV 4 a. Definition of compressor volumetric efficiency 
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b. Adiabatic compression 

c. Compressor suction pressure loss 

d. Compressor back leakage loss 

V 3 a. Definition of compressor volumetric efficiency 

b. Isentropic compression 

c. Compressor suction pressure loss 

 

The equations of the compressor mass flow rate models are listed in the Appendix for reference. The uncertainty 

calculation method and the method to estimate the empirical parameters can be found in Cheung and Wang (2018).  

 

3.2 Experimental data of compressors 
To test the models in Table 1, some observations of compressor performance are needed. This study utilized laboratory 

testing data from two compressors as shown in Table 2 (Shrestha et al., 2013a and 2013b). 

 

Table 2: Specification of compressors 

 Compressor 1 Compressor 2 

Type Hermetic scroll Hermetic scroll 

Displacement volume 20.3 cm3 rev-1 51.0 cm3 rev-1 

Rated power consumption 2.17 kW 3.32 kW 

Rated mass flow rate 0.0396 kg/s 0.0624 kg/s 

Refrigerant R410A R404A 

 

The compressors were tested in Shrestha et al. (2013a, 2013b) following the ANSI/ASHRAE Standard 23.1-2010 

(AHRI, 2010) in calorimeters. They were tested under different compressor suction and discharge dewpoint and 

compressor suction temperature as shown in Figure 1. 

 

 
Figure 1: Operating conditions of (a) Compressor 1 and (b) Compressor 2 during laboratory tests 

During each test, the temperature of compressor suction and discharge were measured by resistance temperature 

detectors with accuracy at ±0.2K.  Coriolis mass flow meters were used to measure the compressor mass flow rate 

with accuracy at ±0.1%, and refrigerant pressure at compressor suction and discharge were also measured with 

accuracy at ±0.25% of their full measurement scale. Other details of the measurement can be found in Shrestha et al. 

(2013a, 2013b). 

 

To select the training data from the compressor testing data, the rule of thumbs to create model I in the compressor 

industry is used (Aute et al., 2015). The operating conditions of the training data set of each compressor are shown in 

Figure 2. 
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Figure 2: Training data of (a) Compressor 1 and (b) Compressor 2 

Figure 2 shows that the training data are selected so that they cover the entire operating range of the compressors. 

There are also 14 data points in the training data only (Aute et al., 2015). The rule of thumb is to minimize the number 

of observations needed to quantify the compressor performance by Model I that has 11 empirical parameters, and the 

number of training data points must be greater than the number of empirical parameters in a model. 

 

4. RESULTS AND DISCUSSION 
 

4.1 Comparison of accuracy of the models 
Accuracy of the models at all data points in Figure 1 are quantified by relative deviations. Relative deviations are 

calculated by dividing the difference between the measured and the estimated compressor mass flow rates by the 

measured mass flow rate. The smaller the magnitude of the relative deviations of a model, the higher its accuracy. 

Traditionally, the accuracy of models is only evaluated at training data points to minimize the number of measurement. 

The relative deviations of the models at the training data points are shown in Figure 3. 

 

  
Figure 3: Box plots of models’ relative deviations at training data points in Figure 1 for (a) Compressor 1 and (b) 

Compressor 2 

 

Figure 3 shows that the Model I is the most accurate model, and model accuracy is lowered as the model contains 

fewer empirical parameters and more physical principles. However, this is actually caused by overfitting because the 

observation cannot be found in Figure 4 where the relative deviation at all data points in Figure 1 are visualized. 
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Figure 4: Box plots of models’ relative deviations at all data points in Figure 1 for (a) Compressor 1 and (b) 

Compressor 2 

 

Figure 4 evaluates the performance of the models by checking the accuracy of the model at all data points and finds 

that that Models II and V are more accurate than other models for both Compressors 1 and 2. 

 

4.2 Comparison of uncertainty of the models 

Uncertainties of the models are compared to analyze the effect of measurement randomness and incomprehensiveness 

of training data to their performance. The evaluation is conducted using relative uncertainties calculated by dividing 

the uncertainty of predicted mass flow rate by the magnitude of the prediction. The larger the relative uncertainty, the 

more the model is subjected to the randomness and incomprehensiveness of measurement, and the worse its 

performance is. The relative uncertainties for each model are visualized in Figure 5. 

 

 
Figure 5: Box plots of models’ relative uncertainties at all data points in Figure 1 using data from (a) Compressor 1 

and (b) Compressor 2 

 

Figure 5 shows that Model II is less subjected to randomness and incomprehensiveness of the training data than other 

models in the prediction of mass flow rates of Compressor 1. In the case of Compressor 2, Models II and IV predict 

mass flow rates more reliably than other models. This shows that more empirical parameters nor more physical 

principles can guarantee a better model performance. An accurate and reliable model should be built with appropriate 

number of physical principles and empirical parameters. 

 

4.3 Comparison of the interval scores of the models  
To evaluate the accuracy and uncertainty of a model with one performance metric, interval scores of the models are 

compared. Similar to the other metrics, interval scores calculated at each data point in Figure 1 can be normalized by 

the predicted mass flow rates. The distributions of the relative interval score for each model are plotted in Figure 6.  

(a) (b)

(a) (b)
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Figure 6: Box plots of models’ relative interval scores at all data points in Figure 1 for (a) Compressor 1 and (b) 

Compressor 2 

 

The results show a similar conclusion as other analyses that Model II is better than other models. However, it shows 

that the worst prediction comes from Model II too, in contrast to the conclusions of Figure 4 and Figure 5 which show 

that Model II estimate all mass flow rates with good accuracy and low uncertainty. Because the uncertainty of Model 

II is small, any inaccurate prediction is potentially a result of systematic error in the model. Hence interval score 

penalizes estimation deviation in Model II much more heavily than other models with larger uncertainties. Similarly, 

high interval scores are also found for Models III and IV in Compressor 1, showing that there are deficiencies in the 

models to explain the change of mass flow rate with its operating conditions. An in-depth analysis reveals that the 

large interval scores in these models all occur at data points with high superheat, showing that the use of compressor 

volumetric efficiency to account for mass flow rates in high superheat scenarios may not be as good as expected. 

Training data at high superheat situation may be necessary to account for the effect of high superheat effectively. 

 

5. CONCLUSIONS 
 

To conclude, this study shows how scoring rules for probabilistic approaches can be used to compare the empirical and 

semi-empirical compressor models. The accuracy and uncertainty of five empirical and semi-empirical models are 

evaluated using an accuracy metric, an uncertainty metric and a metric for probabilistic forecasting methods. Their 

evaluations show that higher number of empirical parameters nor number of principles can guarantee better extrapolation 

performance. The metric for probabilistic forecasting methods further shows that physical principles may not work to 

avoid model systematic bias at extreme operating conditions such as high superheat situation. Training data at high 

superheat situation may be needed even for semi-empirical models to model the effect of high superheat appropriately. 

  

NOMENCLATURE 
 

α Type I Error  

β Empirical parameter  

Δy Uncertainty of variable y (Follow variable y) 

ε Error in regression equation  

f Function of model  

g Function of model empirical parameter estimation  

J Objective function  

�̇� Mass flow rate (kg/s) 

n Number of data points  

P Pressure (Pa) 

ρ Density (kg/m3) 

s Entropy (kJ/kg-K) 

S(y) Interval score of variable y (Follow variable y) 

t Student t-statistics  

T Temperature (°C) 

x Independent variable (varies) 

(a) (b)
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y Dependent variable (varies) 

Subscript   

dew dewpoint model model random error 

dis compressor discharge num numerical method 

input input output output 

I Model I pred predicted 

II Model II suc compressor suction 

III Model III true true value 

IV Model IV V Model V 

mea measured   
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APPENDIX: MATHEMATICAL FORMS OF MASS FLOW RATE MODELS 
A.1 Model I 
Model I is the 10-coefficient compressor mass flow rate model from ANSI/AHRI Standard 540-2004 (AHRI, 2004) 

adjusted for the compressor inlet superheat (Dabiri and Rice, 1981) as shown in Equation (7). 

 

�̇�𝑐𝑜𝑚𝑝,𝑝𝑟𝑒𝑑,𝐼 = (1 + 𝛽𝑝𝑟𝑒𝑑,𝐼,10 (
𝜌𝑠𝑢𝑐(𝑇𝑠𝑢𝑐 , 𝑃𝑠𝑢𝑐)

𝜌𝑠𝑢𝑐,𝑟𝑎𝑡(𝑃𝑠𝑢𝑐)
− 1)) (𝛽𝑝𝑟𝑒𝑑,𝐼,0 + 𝛽𝑝𝑟𝑒𝑑,𝐼,1𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 + 𝛽𝑝𝑟𝑒𝑑,𝐼,2𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

+ 𝛽𝑝𝑟𝑒𝑑,𝐼,3𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2 + 𝛽𝑝𝑟𝑒𝑑,𝐼,4𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 + 𝛽𝑝𝑟𝑒𝑑,𝐼,5𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

2 + 𝛽𝑝𝑟𝑒𝑑,𝐼,6𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
3

+ 𝛽𝑝𝑟𝑒𝑑,𝐼,7𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2 𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 + 𝛽𝑝𝑟𝑒𝑑,𝐼,8𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤,𝑑𝑖𝑠

2 + 𝛽𝑝𝑟𝑒𝑑,𝐼,9𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
3 ) 

(7) 

 

where 𝜌𝑠𝑢𝑐,𝑟𝑎𝑡(𝑃𝑠𝑢𝑐) is obtained with a rated compressor suction superheat at 11.1K and the dew point temperature 

values are estimated from the measured pressure at compressor suction and discharge. 

 

A.2 Model II 
Model II is a model which is built based on the definition of compressor volumetric efficiency which the volumetric 

efficiency is estimated by a quadratic equation of compressor suction and discharge temperature (Rasmussen, 2000). 

Its mathematical form is Equation (8). 

 

�̇�𝑐𝑜𝑚𝑝,𝑝𝑟𝑒𝑑,𝐼𝐼 = 𝜌𝑠𝑢𝑐(𝑇𝑠𝑢𝑐 , 𝑃𝑠𝑢𝑐)(𝛽𝑝𝑟𝑒𝑑,𝐼𝐼,0 + 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼,1𝑇𝑑𝑒𝑤,𝑠𝑢𝑐 + 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼,2𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 + 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼,3𝑇𝑑𝑒𝑤,𝑠𝑢𝑐
2

+ 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼,4𝑇𝑑𝑒𝑤,𝑠𝑢𝑐𝑇𝑑𝑒𝑤,𝑑𝑖𝑠 + 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼,5𝑇𝑑𝑒𝑤,𝑑𝑖𝑠
2 ) 

(8) 

A.3 Model III 
Model III is the model in Jähnig et al. (2000) as shown in Equation (9). 

 

�̇�𝑐𝑜𝑚𝑝,𝑝𝑟𝑒𝑑,𝐼𝐼𝐼 

= 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼𝐼,0𝜌𝑠𝑢𝑐(𝑇𝑠𝑢𝑐 , 𝑃𝑠𝑢𝑐) (1 − 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼𝐼,1 [(
𝑃𝑑𝑖𝑠

𝑃𝑠𝑢𝑐(1 − 𝛽𝑝𝑟𝑒𝑑,𝐼𝐼𝐼,2)
)

(𝑐𝑣(𝑇𝑠𝑢𝑐,𝑃𝑠𝑢𝑐)/𝑐𝑝(𝑇𝑠𝑢𝑐,𝑃𝑠𝑢𝑐))

− 1]) 
(9) 

A.4 Model IV 
Model IV is modified from Equation (9) by adding a term explaining back leakage loss in a compressor to create 

Equation (10) (Arora, 2009). 

 

�̇�𝑐𝑜𝑚𝑝,𝑝𝑟𝑒𝑑,𝐼𝑉 

= 𝛽𝑝𝑟𝑒𝑑,𝐼𝑉,0𝜌𝑠𝑢𝑐(𝑇𝑠𝑢𝑐 , 𝑃𝑠𝑢𝑐)(1 − 𝛽𝑝𝑟𝑒𝑑,𝐼𝑉,1 [(
𝑃𝑑𝑖𝑠

𝑃𝑠𝑢𝑐(1 − 𝛽𝑝𝑟𝑒𝑑,𝐼𝑉,2)
)

(𝑐𝑣(𝑇𝑠𝑢𝑐,𝑃𝑠𝑢𝑐)/𝑐𝑝(𝑇𝑠𝑢𝑐,𝑃𝑠𝑢𝑐))

− 1]

− 𝛽𝑝𝑟𝑒𝑑,𝐼𝑉,3 (
𝑃𝑑𝑖𝑠
𝑃𝑠𝑢𝑐

)) 

(10) 

A.5 Model V 
Model V is modified from the model of compressor in Zakula et al. (2011) and describes the compression process as 

an isentropic compression. The equations in the model are listed from Equation (11) to Equation (13). 

�̇�𝑐𝑜𝑚𝑝,𝑝𝑟𝑒𝑑,𝑉 = 𝛽𝑝𝑟𝑒𝑑,𝑉,0𝜌𝑠𝑢𝑐(𝑇𝑠𝑢𝑐 , 𝑃𝑠𝑢𝑐) (1 − 𝛽𝑝𝑟𝑒𝑑,𝑉,1 [(
𝑃𝑑𝑖𝑠

𝑃𝑠𝑢𝑐(1 − 𝛽𝑝𝑟𝑒𝑑,𝐼𝑉,2)
)

(1/𝑒𝑖𝑠)

− 1]) (11) 

𝑒𝑖𝑠 =
ln(

𝑃𝑑𝑖𝑠
𝑃𝑠𝑢𝑐

)

ln(
𝜌𝑑𝑖𝑠,𝑠
𝜌𝑠𝑢𝑐

)
⁄  (12) 

𝜌𝑠𝑢𝑐 = 𝜌(𝑃𝑑𝑖𝑠 , 𝑠 = 𝑠(𝑇𝑠𝑢𝑐 , 𝑃𝑠𝑢𝑐)) (13) 

 


